

CONFORMATIONAL EFFECTS IN COMPOUNDS WITH 6-MEMBERED RINGS—VII

THE PREFERRED CONFORMATION OF 2,4-DIOXABICYCLO(3.3.1)NONANE

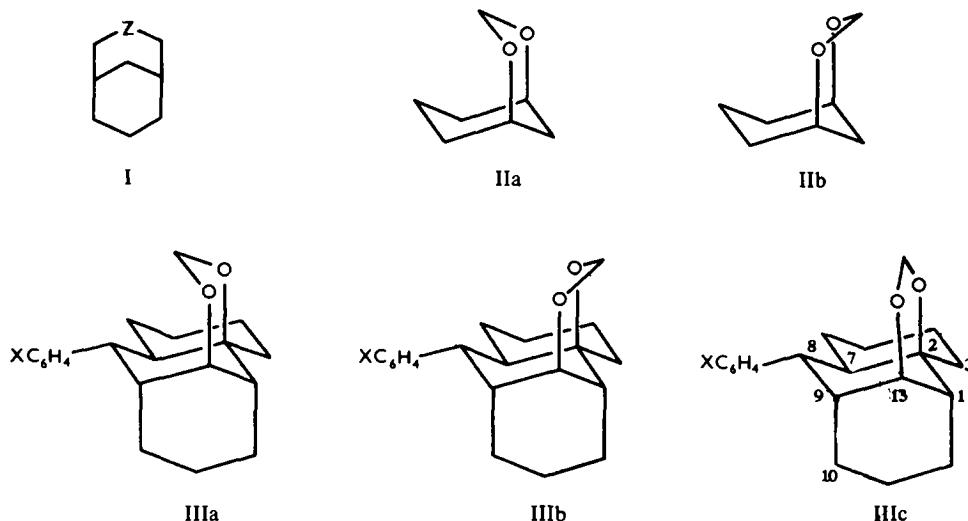
R. J. BISHOP and L. E. SUTTON

The Physical Chemistry Laboratory, The University of Oxford

M. J. T. ROBINSON

The Dyson Perrins Laboratory, The University of Oxford
and

N. W. J. PUMPHREY


The Robert Robinson Laboratories, The University of Liverpool

(Received in the UK 21 August 1968; accepted for publication 30 September 1968)

Abstract—The 1,3-dioxane ring in the preferred conformation of 2,4-dioxabicyclo[3.3.1]nonane II has been shown by dipole moment measurements on the derivatives III to adopt a boat form, in contrast to other heterocyclic analogues of bicyclo(3.3.1)nonane.

BICYCLO[3.3.1]NONANE I ($Z = \text{CH}_2$) and its 3-aza-, 3-azonia-, 3-oxa- and 3-thia-analogues I ($Z = \text{NH}, \text{NH}_2, \text{O}$ or S) have been shown to adopt two-chair conformations.¹⁻³ The severe interactions between the groups at the 3- and 7-positions are so efficiently relieved by the flexibility of the so-called "rigid" chair rings that the chair-boat and two-boat conformations, in which the principal strains are due to eclipsing along the sides of the "boats", are considerably less stable.³ The strain in the two-chair conformation IIa of 2,4-dioxabicyclo[3.3.1]nonane II due to the close mutual approach of the endo 3- and 7-hydrogen atoms, whose centres would be only c 0.4 Å apart in the undistorted molecule, will be even greater than the strain in bicyclo[3.3.1]nonane. The torsional strain in the chair-boat IIb, however, will probably be smaller than in the carbocyclic system because in saturated compounds barriers to rotation are generally smaller about C—O bonds (e.g. in methanol $V_3 = 1.07 \text{ kcal/mole}$,⁴ dimethyl ether $V_3 = 2.72 \text{ kcal/mole}$) than about C—C bonds (e.g.) in ethane $V_3 = 2.9 \text{ kcal/mole}$;⁶ all saturated derivatives of ethane have higher barriers). We anticipated, therefore, that the chair-boat conformation IIb would be more stable than the two-chair conformation IIa, in contrast to the other [3.3.1]-bridged ring systems. As an essential preliminary to a quantitative study of the difference in stability of the conformations IIa and IIb we have determined the conformational equilibrium qualitatively by measuring the dipole moments of the 1,3-dioxanes III ($X = \text{H}, \text{Cl}$ or NO_2), which were prepared from tricyclo [7.3.1.O^{2,7}]tridecane-2,13-diols of known stereochemistry.³

8-Phenyltricyclo[7.3.1.O^{2,7}]tridecane-*cis*-2,13-diol was converted into its cyclic carbonate and the latter was nitrated and then hydrolysed to give the 8-*p*-nitrophenyl diol, which could not be prepared by the methods available for the 8-phenyl- and

8-*p*-chlorophenyl-diols,^{3, 7} nor by nitration of acid sensitive compounds with a free 2-hydroxyl group. The three diols each reacted with dimethoxymethane in the presence of acid to form the 1,3-dioxanes III (X = H, Cl or NO₂). The dipole moments were measured in benzene at 25°.

The dipole moment of 1,3-dioxane has been reported as 2.13 ± 0.03 D⁸ and as 1.9 D,⁹ and has been estimated to be 1.87 D for the boat or chair conformations with C₈ symmetry.¹⁰ From the observed moment of III (X = H) and an assumed moment for the alkylbenzene portion of the molecule, it is possible to derive an effective magnitude for the dipole moment of the 1,3-dioxane ring portion if an angle between the two moments can be ascribed. This angle will depend on the conformation of the 1,3-dioxane ring and can be calculated on various assumptions, e.g. for the undistorted chair (IIIa) and boat (IIIb) forms and for a "semi-planar" form (IIIc) in which the C—O—C—O—C chain of atoms is coplanar and which corresponds to the limit of distortion of the chair ring. The moment of the alkylbenzene portion is assumed to have the magnitude of that of toluene, i.e. 0.4 D,¹¹ and to act along the C_{alkyl}—C_{aryl} bond. The directions of the 1,3-dioxane ring moment for the conformations IIIa-c were calculated from accepted bond lengths and angles¹² and on the assumption that each C—O—C moment lies on the bisector of the C—O—C atom plane.

TABLE 1. DIPOLE MOMENTS OF THE 1,3-DIOXANE RING IN THE COMPOUND III (X = H)
FOR VARIOUS ASSUMED CONFORMATIONS

Conformation of the 1,3-dioxane ring	Angle ^a between dipoles	Dipole moment ^b for 1,3-dioxane ring
Chair, IIIa	144½°	2.59 D
Boat, IIIb	74½°	2.13
Semi-planar, IIIc	109½°	2.38

^a ± 3°.

^b ± 0.05 D; the dipole moment of toluene is assumed to be 0.4 D.¹¹

It is not very profitable to compare these moments with the moments of 1,3-dioxane itself quoted above, but they may be combined vectorially with the moments¹¹ of *p*-chlorotoluene or *p*-nitrotoluene to estimate the moments of III (X = Cl or NO₂) for the three conformations IIIa-c (Table 2). The moments corresponding to distorted chair conformations for the 1,3-dioxane ring will lie between the values for IIIa and IIIc. If the calculations are based on the dipole moments of phenyl- and *p*-chlorophenyl-cyclohexane¹³ (the dipole moment of *p*-nitrophenylcyclohexane has not been measured) rather than of toluene and *p*-chlorotoluene then the values calculated for the conformations IIIa-c (X = Cl) are increased by c 0.1 D but our conclusion is unchanged.

TABLE 2. MEASURED AND ESTIMATED DIPOLE MOMENTS FOR VARIOUS CONFORMATIONS OF THE COMPOUNDS III (X = H, Cl OR NO₂)

Substituent X	Measured dipole moments	Estimated dipole moments for various conformations of III ^a		
		IIIa	IIIb	IIIc
H	2.28 ± 0.05 D			
Cl	3.11 ± 0.05	1.5 ± 0.1 D	3.3 ± 0.1 D	2.5 ± 0.1 D
NO ₂	5.25 ± 0.05	2.8 ± 0.1	5.4 ± 0.2	4.3 ± 0.2

^a Calculated from the angles and dipole moments given in Table 1 and from the dipole moments of *p*-chlorotoluene (1.96 D)¹¹ and *p*-nitrotoluene (4.47 D).¹¹

The dipole moments establish that the 1,3-dioxane ring in the compounds III is in a boat conformation and by inference that the preferred conformation of 2,4-dioxabicyclo[3.3.1]nonane is IIb. This conclusion is supported by the proton magnetic resonance spectrum of III (X = H), in which there is no detectable spin–spin coupling between either of the methylene ether protons and the 13-hydrogen atom. In simple 1,3-dioxanes which exist in chair conformations there are small but easily detectable couplings between the equatorial 2- and 4- (or 6-) hydrogen atoms.¹⁴

EXPERIMENTAL

8-*p*-Nitrophenyltricyclo[7.3.1.0^{2,7}]tridecane-cis-2,13-diol

Carbonyl chloride was bubbled through a warm stirred soln of 8-phenyltricyclo[7.3.1.0^{2,7}]tridecane-cis-2,13-diol (5 g) in benzene (15 ml) and pyridine (10 ml) for 4 hr. The resulting mixture was left overnight at room temp and the 2,13-carbonate was isolated with ether and recrystallized from MeOH in prisms, m.p. 205–206° (Found: C, 76.81; H, 7.80. C₂₀H₂₄O₃ requires: C, 76.89; H, 7.74%). A soln of the carbonate (5 g) and HNO₃ (d 1.4, 14 ml) in Ac₂O (150 ml) was left (1 day) at room temp, treated with NaOAC (20 g) and then concentrated in *vacuo*. When the pasty residue was taken up in water and ether 8-*p*-nitrophenyltricyclo[7.3.1.0^{2,7}]tridecane-cis-2,13-carbonate (5 g) separated and after crystallization from MeOH formed prisms, m.p. 225–226°. (Found: C, 66.99; H, 6.44; N, 4.01. C₂₀H₂₂O₃N requires: C, 67.21; H, 6.49; N, 3.93%). A mixture of the 8-*p*-nitrophenyl 2,13-carbonate (2.5 g) and NaOH (5 g) in MeOH (100 ml) was boiled (1/2 hr), and the diol was isolated with ether and recrystallized from MeOH in minute needles (1.7 g), m.p. 208–212° (dec). (Found: C, 68.73; H, 7.65; N, 4.18. C₁₉H₂₂O₄N requires: C, 68.86; H, 7.62; N, 4.23%).

Preparation of cyclic methylene ethers III (X = H, Cl or NO₂)

An 8-aryl diol (3.5 g) in dimethoxymethane (80 ml) containing conc HSO₄ (0.1 ml) was heated at 100° in a sealed tube for 6 hr. The resulting soln was shaken with BaCO₃, filtered through alumina, concentrated in *vacuo*, and diluted with petr ether from which the methylene ether immediately crystallized. The ethers

prepared were the 8-phenyl derivative III (X = H), m.p. 126–127° (Found: C, 80.23; H, 8.67. $C_{20}H_{26}O_2$ requires: C, 80.49; H, 8.78%), the 8-p-chlorophenyl derivative III (X = Cl), m.p. 130–132° (Found: C, 71.96; H, 7.41; Cl, 10.65. $C_{20}H_{25}O_2Cl$ requires: C, 72.16; H, 7.75; Cl, 10.65%), and the 8-p-nitrophenyl derivative III (X = NO_2), m.p. 144–146° (Found: C, 70.17; H, 7.39; N, 4.28. $C_{20}H_{25}O_4$ requires: C, 69.95; H, 7.33; N, 4.08%).

Dipole moments

Dipole moments (μ) were measured in dilute soln in dry benzene at 25°, assuming dielectric constant (ϵ) 2.2741,¹⁵ and specific volume (v) 1.1446¹⁶ for the solvent. The results were calculated by the method of Halverstadt and Kumler.¹⁷ The molar refraction (R_D), calculated from tables of bond refractions¹⁸ was used as the distortion polarization because the solutions were too dilute for accurate measurement of refractive index differences; w is the weight fraction of the solute.

Compound	10^6w	ϵ	v	de/dw	dv/dw	$T^P 2 \infty$	R_D	R_D calc.	μ (D)
III (X = H)	356	2.2749	1.1445						
	1258	2.2768	1.1443						
	2090	2.2785	1.1440						
	3823	2.2821	—						
III (X = Cl)	587	2.2762	1.1444						
	1201	2.2782	1.1443						
	2246	2.2816	1.1439						
	3612	2.2860	—						
III (X = NO_2)	493	2.2786	1.1443						
	1191	2.2848	1.1442						
	2059	2.2926	1.1438						
	3632	2.3067	—						

Acknowledgement—We thank the Salters' Company for a Scholarship (to R.J.B.) and D.S.I.R. for a maintenance grant (to N.W.J.P.).

REFERENCES

- 1 N. W. J. Pumphrey and M. J. T. Robinson, *Chem. & Ind.* 1903 (1963).
- 2 W. A. C. Brown, G. Eglinton, J. Martin, W. Parker and G. A. Sim, *Proc. Chem. Soc.* 57 (1964); cf. J. Martin and W. Parker, I.U.P.A.C. Congress, London (1963); Abstracts A3–21, p. 137.
- 3 N. W. J. Pumphrey and M. J. T. Robinson, to be published; cf. I.U.P.A.C. Congress, London (1963); Abstracts A3–19, p. 135.
- 4 K. T. Hecht and D. M. Dennison, *J. Chem. Phys.* 26, 31, 48 (1957).
- 5 P. H. Kasai and R. J. Myers, *Ibid.* 30, 1096 (1959).
- 6 D. R. Lide, *Ibid.* 29, 1426 (1958).
- 7 S. Julia and D. Varech, *Bull. Soc. Chim. Fr.* 1127 (1959).
- 8 R. Walker and D. W. Davidson, *Canad. J. Chem.* 37, 492 (1959).
- 9 T. G. Shabsha, *Uch. zap. Kazansk. gos. univ.* 110, Bk. 9, No. 1, (1950), quoted by B. A. Arbuzov and L. K. Yuldasheva, *Bull. Acad. Sci. U.S.S.R.* 1650 (1962).
- 10 C. G. Le Fevre, R. J. W. Le Fevre and M. R. Smith, *J. Chem. Soc.* 18 (1958).
- 11 A. L. McClennan, *Tables of Experimental Dipole Moments* Freeman, San Francisco (1963).
- 12 *Interatomic Distances Supplement*, (Edited by L. E. Sutton) The Chemical Society, London (1965).
- 13 R. J. Bishop, L. E. Sutton, D. Dineen, R. A. Y. Jones, A. R. Katritzky and R. J. Wyatt, *J. Chem. Soc. (B)* 493 (1967).

- ¹⁴ R. U. Lemieux and J. Howard, *Canad. J. Chem.* **41**, 393 (1963).
- ¹⁵ L. Hartshorn, J. V. L. Parry and L. Essen, *Proc. Phys. Soc.* **68B**, 422 (1955).
- ¹⁶ J. Timmermans, *Physico-chemical Constants of Pure Organic Compounds*, Elsevier, New York (1950).
- ¹⁷ I. F. Halverstadt and W. D. Kumler, *J. Am. Chem. Soc.* **64**, 2988 (1942).
- ¹⁸ A. I. Vogel, W. T. Cresswell, G. H. Jefferey and J. Leicester, *J. Chem. Soc.* **514** (1952).